PENTACARBONYL (ORGANOMETALLSTIBIN)CHROM-, -MOLYBDÄN-UND -WOLFRAM-KOMPLEXE*

HERBERT SCHUMANN, HANS JOACHIM BREUNIG und ULRICH FRANK

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, Berlin-Charlottenburg (Deutschland)

(Eingegangen den 28. Februar 1973)

SUMMARY

The reaction of hexacarbonylchromium, hexacarbonylmolybdenum, or hexacarbonyltungsten with tris(trimethylgermyl)-, and tris(trimethylstannyl)stibine results in the elimination of one CO ligand and the formation of corresponding (organometalstibine)pentacarbonylchromium(0), -molybdenum(0), or -tungsten(0) complexes. The IR, Raman, and ¹H NMR spectra are discussed.

ZUSAMMENFASSUNG

Hexacarbonylchrom, Hexacarbonylmolybdän und Hexacarbonylwolfram reagieren mit Tris(trimethylgermyl)- und Tris(trimethylstannyl)stibin unter Abspaltung eines CO-Liganden und Bildung entsprechender Organometallstibin-pentacarbonylchrom(0)-, -molybdän(0)- bzw. -wolfram(0)-Komplexe. Die IR-, Raman- und ¹H-NMR-Spektren werden diskutiert.

EINLEITUNG

Organometallphosphine² und -arsine^{3,4} verdrängen bei der Reaktion mit Übergangsmetallcarbonylen ein Molekül Kohlenmonoxid. Die dabei entstehenden organometallphosphin- bzw. -arsin-substituierten Übergangsmetallcarbonylkomplexe weisen im Vergleich zu den sehr sauerstoffempfindlichen freien Organometallphosphinen und -arsinen eine überraschend hohe Stabilität auf. Es schien uns nun interessant, zu untersuchen, ob die an der Element IVB-Antimon-Bindung sehr leicht angreifbaren Organometallstibine ebenfalls in der Lage sind, unter Erhaltung ihres Molekülgerüstes mit Übergangsmetallcarbonylen unter Bildung von σ -Donor- π -Acceptor-Komplexen zu reagieren und ob diese ähnlich stabil sind, wie die homologen Phosphor- und Arsen-Derivate.

DARSTELLUNG UND EIGENSCHAFTEN

Bestrahlt man Lösungen von Hexacarbonylchrom, Hexacarbonylmolybdän

* Vorläufige Mitteilung: siehe Ref. 1.

oder Hexacarbonylwolfram und Tris(trimethylgermyl)stibin (I)⁵ bzw. Tris(trimethylstannyl)stibin (II)⁵ in Tetrahydrofuran bei Raumtemperatur mit UV-Licht, so bilden sich unter CO-Abspaltung Pentacarbonyl[tris(trimethylgermyl)stibin]chrom (III), -molybdän (IV) und -wolfram (V) bzw. Pentacarbonyl[tris(trimethylstannyl)stibin]chrom (VI), -molybdän (VII) und -wolfram (VIII) in Rohausbeuten zwischen 58 und 81%.

 $M(CO)_{6} + Sb[M'(CH_{3})_{3}]_{3} \xrightarrow{hv} (CO)_{5}M - Sb[M'(CH_{3})_{3}]_{3} + CO$ (I), (II) III M = Cr, M' = Ge IV M = Mo, M' = Ge V M = W, M' = Ge VI M = Cr, M' = Sn VII M = Mo, M' = Sn VIII M = W, M' = Sn

Nach Abziehen des Lösungsmittels unter vermindertem Druck, mehrmaligem Umfällen des kristallinen Rückstandes und anschliessender Vacuumsublimation erhält man (III)–(VIII) in Form gelber Prismen, deren Schmelz- bzw. Zersetzungspunkte oberhalb 120° liegen. Die Komplexe sind erstaunlich stabil gegenüber Feuchtigkeit und Luftsauerstoff. Bei längerem Aufbewahren zersetzen sie sich allerdings langsam unter Abscheidung von Hexacarbonylchrom, -molybdän oder -wolfram. In den meisten organischen Lösungsmitteln, mit Ausnahme von Alkoholen und halogenierten Kohlenwasserstoffen, sind sie gut und über kurze Zeit ohne Zersetzung löslich. Beim längeren Stehen solcher Lösungen kommt es jedoch unter CO-Entwicklung zur Abscheidung grüner bis schwarzer Niederschläge.

SPEKTROSKOPISCHE UNTERSUCHUNGEN

Infrarot- und Raman-Spektren

Tris(trimethylgermyl)- und Tris(trimethylstannyl)stibin

Obwohl (I) und (II) schon seit längerer Zeit bekannt sind, liegen mit Ausnahme einer zu Vergleichszwecken getroffenen Zuordnung der Antimon-Germanium-Schwingungen in (I)^{6,7} noch keine umfassenden Angaben über die Schwingungsspektren dieser Verbindungen vor. Dagegen sind die IR- und Raman-Spektren von Trisilylstibin und Tris(trimethylsilyl)stibin vollständig zugeordnet und ausgewertet⁸.

Bei der Zuordnung der von uns im Bereich zwischen 4000 und 30 cm⁻¹ aufgenommenen IR- und Raman-Spektren von (I) und (II) (Tabelle 1) stützen wir uns auf Vergleiche mit den Zuordnungen der Spektren von Tris(trimethylsilyl)stibin⁸ sowie Bis(trimethylgermyl-, bzw. -stannyl)sulfid⁹, -selenid¹⁰ und -tellurid¹¹. Betrachtet man bei der Zuordnung der Metall-Antimon-Banden die Trimethylgermyl- und Trimethylstannyl-Gruppen vereinfachend als eine schwingende Einheit und geht man von der berechtigten Annahme aus, dass der Winkel M-Sb-M zwischen 90 und 100° liegt, so kann man (I) und (II) als 4-Massen-Moleküle der Symmetrie C_{3v} bezeichnen. Ausser den Schwingungen der Trimethylmetallgruppen sind nach diesem Modell nur noch 4 Schwingungen zu erwarten, nämlich 2 Valenzschwingungen $v_{as}(M_3Sb)(E)$ und $v_s(M_3Sb)(A_1)$ sowie 2 Deformationsbanden $\delta_{ns}(M_3Sb)(E)$ und $\delta_s(M_3Sb)(A_1)$. Die Spektren von (I) und (II) zeigen, dass $v_{as}(M_3Sb)$ und $v_s(M_3Sb)$ praktisch im gleichen Bereich zu finden sind und dass im langwelligen Bereich unterhalb 100 cm⁻¹ nur je

TABELLE 1

IR-ABSORPTIONEN ^a (in cm^{-1}) UND RAMAN-LINIEN ^b (in cm^{-1}) VON (I) UND (II)
st, stark ; m, mittel ; s, schwach ; (Sch), Schulter ; Werte in Klammern, geschätzte Intensitäten.

Zuordnung	(I)		(11)		
	IR	RL	IR	RL	
v _{as} (CH ₃)	2965 st	2966(1)	2969 st	2986(1)	
v ₃ (CH ₃)	2905 st	2907(3)	2911 st 2855 (Sch)	2911(3)	
$2 \times \delta_{n}(CH_3)$	2795 s		2775 (Sch)		
$2 \times \delta_{s}(CH_{3})$	2450 s		2350 m 1685 s		
$\delta_{\text{es}}[M(CH_3)] + v_{\text{es}}(MC_3)$	1460 s				
$2 \times \rho_{\rm ss}(\rm CH_3)$			1460 s		
$\delta_{as}(CH_3)$	1406 m		1375 m		
$\rho_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_$			1260 m		
$\rho_{*}[M(CH_{3})_{1}] + v_{*}(MC_{3})$	1260 s				
δ _s (CH ₃)	1235 m	1242(2)	1190 m	1193(4)	
δ _s (CH ₃)		• •	1181 m	1183(4)	
	1155 s			• •	
	1090 s		1095 m		
	1012 s		1015 m		
$\rho_{as}(CH_3)$			763 st	770(1)	
$\rho_{as}(CH_3)$	810 st		731 st		
$\rho_{\rm s}(\rm CH_3)$	755 (Sch)		700 (Sch)		
$v_{as}(MC_3)$	595 st	593(3)	518 st	527(8)	
v _s (MC ₃)	558 st	566(10)	498 st	509(10)	
v _{ss} (SbM ₃)	231 st		183 st		
v _s (SbM ₃)		233(3)		183(8)	
δ(MC ₃)	189 m	198(3)		164(10)	
δ(MC ₃)	172 st	178(4)	140 st	153(9)	
δ(MC ₃)	142 s	141(6)	112 (Sch)	115(8)	
δ(SbM₃)	65 s	63(2)	60 s	53(7)	_

^a Perkin-Elmer IR-Spektrophotometer 457 und Polytec FIR 30 Fourierspektrometer, 0.1 mm Schichtdicke in Substanz. ^b Raman-Spektrophotometer Cary 82, in Substanz, Krypton-Laser, Spectra-Physics, 647.1 nm-Linie.

eine Bande für eine M₃Sb-Deformationsschwingung übrig bleibt. Diese Beobachtungen stehen im Einklang mit den spektroskopischen Ergebnissen von Tris(trimethylsilyl)stibin⁸. Die im Spektrum von Tris(trimethylgermyl)stibin⁷ einer v_s (Ge₃Sb) zugeordnete Bande bei 176 cm⁻¹ (Ref. 6) ist zweifelsohne eine δ (GeC₃).

Komplexe

Zur Aufnahme der IR- Spektren der Komplexe (III)-(VIII) waren jeweils zwei verschieden präparierte Proben notwendig. Um im langwelligen Bereich alle Banden auffinden zu können, haben wir konzentrierte Aufschlämmungen der kristallinen Komplexe in Nujol vermessen. Das hatte zur Folge, dass im Bereich zwischen 4000 und 1400 cm⁻¹, bedingt durch die dort auftretenden Banden dieses Kohlenwasserstoffs keine Frequenzen für die Komplexe zugeordnet werden konnten. Desgleichen erschienen bei dieser Technik die CO-Valenzschwingungsbanden um 2000 cm⁻¹ nicht gut aufgelöst. Deshalb haben wir diese CO-Valenzschwingungen der Komplexe (III)–(VIII) in verdünnten Lösungen der Verbindungen in Pentan bestimmt. Die Raman-Spektren wurden von unter Argon eingeschmolzenen kristallinen Proben aufgenommen.

Die Moleküle (CO)₅ M'-Sb(MR₃)₃ entstehen durch Vereinigung einer $C_{3\nu}$ -Einheit $[Sb(MR_3)_3]$ und einer C_{4v} -Einheit $[M'(CO)_5]$. Für die hieraus im günstigsten Fall resultierende Gesamtsymmetrie C, sind 5 IR- und Raman-aktive CO-Valenzschwingungen zu erwarten. Generell nimmt man jedoch für monosubstituierte Komplexe der Hexacarbonylverbindungen der VI. Nebengruppe des Periodensystems des Typs (CO)₅M'L bei vereinfachender Betrachtung der Liganden als Massenpunkte $C_{4\nu}$ -Symmetrie an¹². Von den hierfür zu erwartenden 4 CO-Valenzschwingungsbanden sollten die beiden A_1 - und die B_1 -Schwingung als schwache Absorptionen, die E-Schwingung dagegen als eventuell aufgespaltene starke Bande im Infrarotspektrum auftreten, während im Raman-Spektrum die beiden A,-Schwingungen und die B₁-Schwingung als starke Linien, die E-Schwingung dagegen nur als schwaches Signal erscheinen sollte. Unsere Zuordnung stützt sich auf Ergebnisse von Kraihanzel und Cotton¹³ und orientiert sich an den 3 intensiven Raman-Signalen für v(CO) $[A_1(cis)], v(CO) [B_1]$ und $v(CO) [A_1(trans)]$. Durch genauere Messung konnten wir unsere in der vorläufigen Mitteilung¹ angegebenen Werte verbessern. Die dort bei ca. 1990 gefundenen Banden sind nicht auf CO-Valenzschwingungen der Komplexe (III)-(VIII) zurückzuführen, sondern entsprechen der F_{1u}-Bande der jeweiligen Hexacarbonylverbindungen, die als Verunreinigungen nur sehr schwer aus den monosubstituierten Komplexen zu entfernen sind.

Die in Tabelle 2 aufgeführten Frequenzwerte zeigen deutlich, dass bei den hier untersuchten Komplexen der Einfluss der Organometallstibin-Liganden auf die Lage der diagnostischen $v(CO)(A_1)$ -Banden minimal ist und innerhalb der Fehlergrenze TABELLE 2

IR-ABSORPTIONEN ^e (in cm ⁻¹) UND 1	RAMAN-LINIEN [®]	(in cm ⁻¹) DER	KOMPLEXE	(III)-(VIII)
st, stark; m, Mittel; s, schwach; (Sch), Schu	ulter; Werte in Klam	nmern, geschātzte	Intensitāten.	

Verbindung	IR v(CO) (A1 ⁽²⁾) RL	B 1	E	E	?	A ₁ ⁽¹⁾
(CO) ₅ CrSb[Ge(CH ₃) ₃] ₃	2052 m	1960 (Sch)	1938 (Sch)	1930 st		1900 m
(III) ·	2043(2)	1963(4)	1941(0)			1916(1)
(CO) ₄ MoSb[Ge(CH ₃) ₃] ₃	2064 т	1970 s	1940 st	1935 (Sch)	1910 т	1895 s
(IV)	2058(3)	1972(7)	1948(0)	1936(0)	1920(1)	1910(3)
(CO)₅WSb[Ge(CH ₃) ₃] ₃	2061 m	1960 (Sch)	1945 (Sch)	1930 st	1907 (Sch)	1900 m
(V)	2056(4)	1964(10)	1943(1)	1928(1)	1912(4)	1903(4)
(CO) ₅ CrSb[S ₂ (CH ₃) ₃] ₃	2052 m	1955 ш	1931 (Sch)	1929 st	• • •	1900`s´
	2041(4)	1960(8)	1936(0)	1927(1)		1905(6)
(CO), MoSb[Sn(CH ₃),],	2062 m	1970 (Sch)	1940 st	1933 m		1908 s
(VII)	2057(3)	1970(8)	1940(0)	1935(0)		1909(4)
(CO),WSb[Sn(CH ₃),],	2062 m	1950 (Śch)	• • •	1930 st		1900 s
(VIII)	2056(3)	1961(6)	1940(4)	1930(0)		1900(4)

" Perkin-Elmer Infrarot-Spektrophotometer 457, verd. Lösungen in Pentan. " Raman-Spektrophotometer Cary 82, in Substanz, Krypton-Laser, Spectra-Physics, 647.1 nm Linie.

m
щ
Ξ
BE
Ξ

· --.'.

IR-ABSORPTIONEN IM BEREICH 1300-50 cm⁻¹⁴ UND RAMAN-LINIEN IM BEREICH 1300-30 cm^{-1b} DER KOMPLEXE (III)-(VIII) st, stark; m, mittel; s, schwach; (Sch), Schulter; Werte in Klammern, geschätzte Intensitäten.

•

IR		(41)						((1111.1)	
	RL	IR .	NL.	I.R	RL	IR	RL	IR	RL	IR	RL
δ _k (CH ₃) 1248 s		1240 (Sch)	1250(1)	1245 (Sch)	1250(1)	1195 s	1198(2)		1198(2)	1195 s	1199(3)
ð.(CH.) 1235 m	1238(0)	1233 s	1238(1)	1233 s	1238(1)	1185 s	1193(2)		1186(2)	1180 s	1186(3)
//"(MCH ₃) 832 (Sch)		830 (Sch)		B31 (Sch)	B30(0)		•				
A. (MCH ₃) 815 st		810 st		810 st	800(D)	760 st		760 st		758 st	
p.(MCH3) 765 (Sch)		720 (Sch)		735 (Sch)	720(0)	725 (Sch)		730 st		722 (Sch)	
6[M'(CO),] 674 st		670 s		595 st	605(5)	670 st	670(0)	670 s		596 ш	
δ[M'(CO),] 655 st		655 s		575 sl		655 st		650 s		578 ш	
δ[M'(CO),] 560 m		584 st		560 si		550 s		606 sl	605(0)		
v. (MC1) 600 st	(2)(2)	600 st	(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(595 st	605(5)	530 st	53 I(6)	527 si	(9)065	527 si	(9)IES
v _s (MC ₃) 560 m	569(6)	558 st	567(8)	560 st	568(8)	508 st	510(8)	502 m	508(9)	500 m	509(9)
"(M'C.)	483(2)	445 (Sch)	448(2)	460 s	463(2)		483(5)	448 (Sch)	451(2)	460 (Sch)	465(3)
M/C_) 468 m				432 s	436(3)	468 m		,		,	437(3)
v(M'C,) 420 (Sch)	410(1)	410 (Sch)	414(3)	412 s	415(1)	420 s	413(4)		412(2)		
v(M'C_s) 395 (Sch)	400(5)	378 m	382(1)	381 st	1)160		401(10)	380 m	385(0)	385 ш	385(0)
v.,(M,Sb) 231 st		232 si		23l si		189 st		190 st		190 st	
v.(M ₃ Sb)	(1)622		235(4)		236(4)		(Z)E 6 I		(E)561		194(4)
δ(MC ₃) 200 (Sch)			(6)461	190(Sch)	196(4)						
178 st	185(2)	l 79 m	180(3)	180 m	(E)081	175 s	165(5)	173 m			
- pun	(1)5(1)	160 (Sch)							157(4)	160 s	155(3)
145 s	147(10)	l35 m	(01)861	128 s	146(3)	144 m	147(6)	140 m	150(2)	140 m	148(2)
۶(M'C ₅) ^J 130 s	130(4)	123 s		123 s	128(9)		120(10)	121 m	117(10)		120(2)
105 s	95(9)	98 m	98(10)	98 m	100(10)	108 s	94(10)	100 s		108 s	112(10)
	75(5)	70 s	(6)02	70 m	(8)8)				B6(9)	92 s	91(8)
(M ₃ Sb)	61(3)		56(6)		56(7)		55(8)		53(7)		53(7)

CARBONYL (METALLSTIBIN) GRUPPE VIA KOMPLEXE

der Messungen liegt. Das steht in Übereinstimmung mit an analogen organometallphosphin-substituierten Pentacarbonylchrom-, -molybdän- und -wolfram-Komplexen¹⁴ gemachten Beobachtungen.

Entsprechend der Symmetrie-Erniedrigung des M'(CO)₅-Gerüstes von C_{4r} nach C_s bei Kopplung mit der Einheit Sb(MR₃)₃ ist auch für das Gerüst M'SbM₃ der Symmetrie C_{3v} ein Verlust von Symmetrieelementen verbunden. Unter Vernachlässigung von Kopplungen zwischen den inneren Schwingungen der (CH₃)₃M-Gruppen und der M'(CO)₅-Gruppen mit jenen des M'SbM₃-Gerüstes und Anwendung der "Lokalsymmetrie" für die nähere Umgebung des Antimon-Atomes ist es möglich, die Komplexe als 5-Massen-Moleküle der Symmetrie C₃, zu behandeln. Aus Tabelle 3 ist zu entnehmen, dass die Frequenzwerte der Germanium- und Zinn-Antimon-Bindungen von (I) und (II) $\left[v_{as}(M_3Sb)(E) \text{ und } v_s(M_3Sb)(A_1)\right]$ beim Übergang zum jeweiligen Komplex $[v_{as}(M_3SbM')(E)$ und $v_s(M_3SbM')(A_1)]$ keine nennenswerten Verschiebungen erleiden. Die Zuordnung dieser Banden und der Valenzschwingungen $v(MC_3)$ und $v(M'C_5)$ sowie der Deformationsschwingungen $\delta [M(CO)_5]$ ist problemlos, da sie in klar abgegrenzten Bereichen liegen und im Vergleich zu den Schwingungen der entsprechenden Organometallchalkogenid-Komplexe lagekonstant sind. Schwierigkeiten ergeben sich dagegen im Bereich unterhalb 180 cm⁻¹. Hier überlagern sich verschiedene M'C₅ und MC₃-Deformationsschwingungen, so dass eine spezifizierte Zuordnung nicht mehr möglich ist. Auch die Zuordnung der Chrom-, Molybdänund Wolfram-Antimon-Banden v(M'-SbM₃) und der Gerüstdeformationsschwingungen $\delta(M_3Sb)$ ist aus den IR-Spektren nicht mehr möglich, da in diesem Bereich um 70 cm⁻¹ eine mittelstarke Bande des als Fenstermaterial verwendeten Polyāthylens auftritt.

¹H-NMR-Spektren

Die ¹H-NMR-Spektren der Liganden (I) und (II) und der Komplexe (III)-(VIII) wurden von benzolischen Lösungen der Verbindungen aufgenommen. Sie zeigen ein Singulett-Signal, das im Falle der Zinn-Verbindungen von Kopplungs-

TABELLE 4

NMR-DATEN DER KOMPLEXE (III)-(VIII)

Alle Werte in Hz, Varian A60, 60 MHz, 5%. Lösungen in Benzol, TMS als externer Standard.

Verbindung		$J(^{1}HC^{117}Sn)$	$J(^{1}HC^{119}Sn)$	
$\begin{array}{c} (CO)_{5}CrSb[Ge(CH_{3})_{3}]_{3} & (III) \\ (CO)_{5}MoSb[Ge(CH_{3})_{3}]_{3} & (IV) \\ (CO)_{5}WSb[Ge(CH_{3})_{3}]_{3} & (V) \\ (CO)_{5}CrSb[Sn(CH_{3})_{3}]_{3} & (VI) \\ (CO)_{5}MoSb[Sn(CH_{3})_{3}]_{3} & (VII) \\ (CO)_{5}WSb[Sn(CH_{3})_{3}]_{3} & (VII) \end{array}$	+ 6.5 + 2.5 + 5.0 - 10.0 - 11.5 - 11.5	51 52 50	54 56 54	

satelliten-Signalen umgeben ist. Die Werte der chemischen Verschiebung, gemessen gegen TMS als externem Standard, sowie die Kopplungskonstanten sind Tabelle 4 zu entnehmen.

TABELLE 5

DARSTELLUNG DER VERBINDUNGEN (III)-(VIII)

Stibin			CO)6		Reakt. Zeit	Reaktionsprodukt	Ausbente		Schmp.
(g)	(mMol)	М	(g)	(mMol)	(Stdn.)		(g)	(%)	- (-C)
(1) 4.7	10	Cr	2.2	 10	3	(CO),CrSb[Ge(CH ₃),], (III)	4.6	69	130 (Zers.)
(I) 4.7	10	Мо	2.6	10	4	(CO), MoSb[Ge(CH,),], (IV)	4.8	68	130 (Zers.)
(I) 4.7	10	w	3.5	10	2	(CO), WSb[Ge(CH ₁),], (V)	5.6	70	127` ′
(II) 6.1	10	Cr	2.2	10	3	(CO),CrSb[Sn(CH,),],	6.2	77	132
(II) 6.1	10	Мо	2.6	10	2	(CO), MoSb[Sn(CH ₃)], (VII)	7.1	84	130 (Zers.)
(11) 6.1	10	W	3.5	10	3	$(CO)_{5}WSb[Sn(CH_{3})_{3}]_{3}$ (VIII)	5.4	58	130 (Zers.)

TABELLE 6

ANALYSENWERTE DER VERBINDUNGEN (III)-(VIII)

Verbindung	MolGew.	Analysen	werte, gef. (her.) (%)
	Gef.ª (ber.)	C	Н
$C_{14}H_{27}CrGe_{3}O_{5}Sb$ (III)	613	24.70	3.96
•	(666.94)	(25.21)	(4.08)
C14H27Ge3M0O3Sb (IV)	753	24.30	3.96
	(710.88)	(23.65)	(3.83)
C ₁₄ H ₂₇ Ge ₃ O ₅ SbW (V)	695	19.30	3.22
	(798.85)	(21.05)	(3.41)
C14H27CrO3SbSn3 (VI)	720	19.80	3.40
	(805.24)	(20.88)	(3.38)
C _{1↓} H ₂₇ MoO₅SbSn ₃ (VII)	750	20.60	3.50
	(849.18)	(19.80)	(3.20)
C ₁₄ H ₂₇ O₅SbSn₃W (VIII)	810	19.30	2.63
	(937.18)	(17.94)	(2.90)

^a Kryoskopisch in Benzol.

EXPERIMENTELLES

Tabelle 5 gibt einen Überblick über die eingesetzten Mengen an Organometallstibin und Metallhexacarbonyl, über die Reaktionszeiter. Ausbeuten und Zersetzungspunkte der erhaltenen Komplexe. Aus Tabelle 6 sind die Analysenwerte der Verbindungen zu entnehmen. Alle Komplexe wurden unter Ausschluss von Luftsauerstoff und Feuchtigkeit unter sorgfältig von Sauerstoff und Wasser befreitem Argon dargestellt. Eine Lösung des jeweiligen Metallhexacarbonyls in 100 ml Tetrahydrofuran wurde mit der angegebenen Menge des jeweiligen Organometallstibins versetzt und unter magnetischem Rühren mit UV-Licht (Quarzlampe Q 81 Hanau) bei Zimmertemperatur bestrahlt. Der Reaktionsverlauf wurde jeweils an Hand der abgespaltenen Menge Kohlenmonoxid verfolgt. Hierzu wurde ein mit Wasser gefüllter Gasometer mit vorgeschaltetem Trockenrohr (Silicagel) verwendet. Man entfernte nach Abspaltung der berechneten Menge Kohlenmonoxid das Lösungsmittel im Vacuum (25°/1 mm), kristallisierte mehrmals aus Pentan um (Auflösen bei 25°, Ausfällen bei -78°) und sublimierte bei 80–100°/10⁻⁴–10⁻⁵ mm.

DANK

Unser Dank gilt der Badischen Anilin und Soda-Fabrik AG., Ludwigshafen, für kostenlose Überlassung von Molybdänhexacarbonyl, sowie der Deutschen Forschungsgemeinschaft, dem Senator für Wirtschaft des Landes Berlin und dem Fonds der Chemischen Industrie für finanzielle Unterstützung dieser Arbeit.

LITERATUR

- 1 H. Schumann und H. J. Breunig, J. Organometal. Chem., 27 (1971) C28.
- 2 H. Schumann, Angew. Chem., 81 (1969) 970.
- 3 E. W. Abel, J. P. Crow und S. M. Illingworth, J. Chem. Soc. A, (1969) 1631.
- 4 H. Schumann, G. Pfeifer und H. Roeser, J. Organometal. Chem., 44 (1972) C10.
- 5 E. Amberger und R. W. Salazar, J. Organometal. Chem., 8 (1967) 111.
- 6 I. Schumann-Ruidisch und H. Blass, Z. Naturforsch., B, 22 (1967) 1081.
- 7 H. Blass, Dissertation, Universität Würzburg, 1968.
- 8 H. Bürger, U. Goetze und W. Sawodny, Spectrochin. Acta, 26A (1970) 671.
- 9 H. Schumann, O. Stelzer, R. Weis, R. Mohtachemi und R. Fischer, Chem. Ber., 106 (1973) 48.
- 10 H. Schumann, R. Mohtachemi, H. J. Kroth und U. Frank, Chem. Ber., 106 (1973) 1555.
- 11 H. Schumann, R. Mohtachemi, H. J. Kroth, und U. Frank, Chem. Ber., 106 (1973) 2049.
- 12 L. E. Orgel, Inorg. Chem., 1 (1962) 25.
- 13 F.A. Cotton und C.S. Kraihanzel, J. Amer. Chem. Soc., 84 (1962) 4432; C.S. Kraihanzel und F.A. Cotton, Inorg. Chem., 2 (1963) 533.
- 14 H. Schumann, O. Stelzer, J. Kuhlmey und U. Niederreuther, Chem. Ber., 104 (1971) 993.